
Hard Shadow Anti-Aliasing for Spot Lights in a Game Engine
Márcio C. F. Macedo∗ Almir V. Teixeira Antônio L. Apolinário Jr. Karl A. Agüero

Federal University of Bahia, Department of Computer Science, Brazil

Figure 1: Unity generates real-time shadows with aliasing artifacts along the shadow boundary because of the shadow mapping technique (left).
In this paper, we show how these shadows can be anti-aliased for spot lights using the concept of shadow revectorization (right).

ABSTRACT

Real-time shadow rendering is desirable in several computer graph-
ics applications, such as games. The most popular game engines
typically provide support to this feature through the traditional
shadow mapping algorithm. Unfortunately, shadow mapping is
well known to generate aliasing artifacts along the shadow bound-
ary, decreasing the realism of the rendered virtual scenes. In this
paper, we aim to minimize these artifacts by implementing an anti-
aliasing hard shadow technique in a game engine. Even with the
limited source code access provided by some game engines, we
demonstrate how to implement an improvement of the shadow map-
ping technique for shadow anti-aliasing. We validate our approach
by implementing the revectorization-based shadow mapping tech-
nique for spot lights in a commercial and popular game engine, the
Unity 3D. We show that, in this case, we are able to improve the
shadow visual quality at the cost of only ∼1.2% of loss, in average,
in the frame rate. Finally, the results indicate that the proposed im-
plementation is ready to be integrated into Unity projects which use
spot lights as a source of direct illumination.
Keywords: Real-time shadows, shadow mapping, revectorization.

1 INTRODUCTION

Shadow rendering plays an important role for games, since they
augment the realism of virtual characters and scenarios, further im-
proving the visual perception of the player with respect to the rela-
tive disposition of the virtual objects into the game.

Shadows, like many other computer graphics effects in games,
must be rendered in real-time and with high quality to provide high

∗e-mail: marciocfmacedo@gmail.com

user interactivity with the application. In this case, shadows must
consume a few milliseconds (ideally, less than 10 milliseconds, as
pointed in [41]), of the total frame time in a game, since many other
effects are expected to run in real-time and increase the frame time
as well. Meanwhile, the shadows must be visually convincing, en-
abling the rendering of realistic virtual scenarios.

Accurate shadow rendering is not much used for games because
it requires the computation of the direct illumination part of the ren-
dering equation [17, 19], which states that the visibility of each one
of hundreds or thousands of rays directly emitted from an area light
source to the virtual scene must be taken into account to compute
photorealistic shadows. Even with the modern graphics hardware,
the task of computing accurate shadows is still impractical for real-
time, dynamic applications.

The most traditional way to compute shadows in real-time dates
back to 1978, when the shadow mapping technique was proposed
[38]. However, the aliasing artifacts introduced by such a technique
trade off high frame rate by low rendering quality. Since then, nu-
merous practical algorithms (e.g., [22, 20, 32, 24]) have been pro-
posed to reduce those artifacts efficiently. Unfortunately, most of
them were not incorporated into game engines, leading the devel-
opers to implement their own algorithms if they want more accurate
shadows. For the game engines which use the shadow mapping and
do not give sufficient source code access for one to change its al-
gorithm, the only option left to the developer is to keep rendering
scenes with aliased shadows.

In this paper, we present a new implementation of an anti-
aliasing hard shadow technique for a game engine. Inspired by
revectorization-based shadow mapping (RBSM) [24], which pro-
vides shadow anti-aliasing in real-time, we show how this technique
can be implemented for spot lights in Unity 3D, one of the most
popular game engines nowadays, and that has limited source code
access and does not provide much support for real-time shadow
anti-aliasing. We show that RBSM indeed offers real-time frame

rates, while improving the visual quality of the rendered virtual
scenes.

In this work, our main contributions are:

1. An evaluation of the developed shadow anti-aliasing tech-
nique with respect to visual quality and rendering time for
different scenes loaded into Unity;

2. A description of how to implement variants of the shadow
mapping algorithm in Unity;

3. A practical implementation of an anti-aliasing shadow tech-
nique for Unity;

4. A review of the support provided by the most popular game
engines with respect to shadow rendering;

2 RELATED WORK

To understand the proposed implementation of the shadow anti-
aliasing technique for Unity, we first review the existing techniques
for shadow rendering, with a focus on shadow anti-aliasing. Then,
we present a review of how the existing game engines support
shadow rendering. We restrict our review to techniques which han-
dle hard shadows, as soft shadows (i.e., shadows with penumbras)
are beyond the scope of this paper. A more detailed, comprehensive
review of the existing shadow techniques can be found in [11, 40].

2.1 Shadow Rendering
Ray tracing [37] is one of the most traditional algorithms able to
compute accurate shadows. In this technique, a view ray is traced
from the camera viewpoint to the virtual scene through each pixel in
the image plane. If the view ray hits a surface point in the scene, a
new shadow ray is traced from the hit point to the light source. If the
shadow ray hits an opaque object before reaching the light source,
the surface point hit by the view ray is in shadow. Otherwise, the
surface point is directly visible by the light source and is lit. Ray
tracing is not only able to simulate shadows, but also many other
effects (e.g., reflection, refraction), which makes it a powerful tool
for computing global illumination effects. Unfortunately, even with
the recent advances in literature [36, 15, 31], ray tracing does not
provide real-time performance for dynamic scenes. Therefore, it is
mostly used for applications that use offline rendering (e.g., movie
production) or for the rendering of precomputed effects for static or
dynamic scenes in games [28].

A faster alternative to ray tracing that has also found applicability
in games is the shadow volume technique [9]. A shadow volume
consists of a set of polygons formed by an extrusion of the vertices
located at the silhouette of the objects presented in the scene in the
direction of the rays emitted by the light source. A surface point
is in shadow if it is located inside the shadow volume and is lit
otherwise. Shadow volume is faster than ray tracing and generates
accurate shadows. However, despite the recent advances towards
adapting the use of shadow volume to compute real-time shadows
[16, 27], shadow volume still demands high memory footprints and
quite involved implementations, which makes it less practical for
games nowadays.

A faster, less accurate alternative than both ray tracing and
shadow volume is the shadow mapping technique [38]. For this
technique, the virtual scene is rendered twice, one from the view-
point of the light source, where the depth buffer as seen from the
light source is stored as a shadow map, and other from the view-
point of the camera, where the scene is projected into the shadow
map and a depth comparison determines whether a surface point
lies in shadow. Shadow mapping has several advantages which
makes it largely used in games: easiness for implementation, real-
time performance, scalability with respect to geometry complexity,

hardware support, among others [11]. Unfortunately, all those ad-
vantages come at the price of aliasing artifacts which are generated
due to the finite resolution of the shadow map.

Due to the popularity of shadow mapping, many techniques have
been proposed to improve the visual quality of the shadows by min-
imizing the aliasing artifacts. Rather than generating the shadow
map by using a uniform sampling of the depth buffer, warping
strategies [35, 39, 25, 22] use non-uniform projections to improve
the sampling resolution of the shadow map for the regions which
are near the camera viewpoint, while lowering the sampling reso-
lution for the other parts of the shadow map. This kind of strategy
helps on the minimization of the aliasing artifacts at little additional
cost.

Aliasing artifacts are severely magnified for large-scale virtual
environments when using a single shadow map of insufficient reso-
lution, since the shadow map will not be able to capture the details
of the entire scene. Partitioning strategies [12, 43, 42, 20] have been
proposed to generate multiple shadow maps and associate each one
of them with a specific part of the 3D space. Partitioning tech-
niques, combined with warping techniques, are able to greatly re-
duce aliasing artifacts. However, this strategy must be used with
care, because the generation and management of multiple shadow
maps incur the increasing of memory usage and processing time.

One alternative to shadow anti-aliasing relies on the filtering,
or blurring, of either the aliased hard shadows [33] or the shadow
map itself [10, 6, 32]. This kind of strategy is effective to simulate
penumbra, requires low processing time and is able to minimize
the aliasing artifacts. Unfortunately, details of the shadow bound-
ary may be lost due to the blurring of the shadow and light leaking
artifacts may be generated due to the shadow map pre-filtering.

To effectively remove the aliasing artifacts, some techniques
[34, 29, 21] store additional geometric information (e.g., trian-
gle position, normals) of the objects into the shadow map in or-
der to change the shadow mapping visibility function and increase
the quality of the shadow rendering. Unfortunately, these tech-
niques increase memory consumption and processing time to gen-
erate high-quality anti-aliasing. Without relying on additional geo-
metric information, revectorization-based shadow mapping [7, 24]
detects the surface points located in the aliased shadow boundary,
performs a traversal over the shadow boundary to estimate the dis-
tance of these points to the origin of the aliased shadow boundary,
and finally uses a set of linear comparisons to determine whether
a surface point must be put in shadow (i.e., revectorized). As we
show in the rest of this paper, this shadow revectorization technique
is able to recover an approximate accurate shadow boundary and
achieve real-time frame rates, while keeping memory consumption
as low as the one obtained with the shadow mapping.

2.2 Shadows in Game Engines
Since shadows play an important role in games, shadow rendering
is an important feature for game engines.

Unity 3D Engine [4] uses shadow mapping to generate shadows
for spot and point light sources. For directional light sources, cas-
caded shadow maps [12] take advantage of the partitioning strategy
to reduce aliasing artifacts. Area light sources are supported for the
Unity Pro version and require precomputed lighting conditions for
the scene. Although not natively supported, shadow volumes are
available as a free plugin for older versions of Unity in the Unity
Asset Store1. While these techniques may work well for some sce-
narios, the main problem with Unity is that both free and profes-
sional versions of the engine give limited source code access for
developers (the entire source code is available through an additional
payment for Unity Pro users). Hence, it is difficult for one to im-
plement its own improvements in the shadow algorithms using the
available source code.

1https://www.assetstore.unity3d.com/en/content/1861

(a) (b) (c) (d)

(h) (g) (f) (e)

(i) (j) (k) (l)

Shadow Mapping

Revectorization-based Shadow Mapping

Figure 2: An overview of the revectorization-based shadow mapping technique. Shadow mapping renders the scene from the camera (a)
and light source viewpoints (b) to generate a shadow map (c) and compute real-time shadows (d) with aliasing artifacts (e). Then, for each
shadow map texel (yellow grid in (e)) lit by shadow mapping, revectorization-based shadow mapping evaluates the neighbourhood (f) to detect
the discontinuity directions (green arrows in (g)) where the aliasing is located (g). A traversal over the shadow boundary (h) is performed to
determine the size of the aliasing (blue arrows in (h)) and the normalized relative distance of each fragment in the camera view (represented by
the red grid in (h, i, j)) to the aliased boundary (i). With such data, the algorithm is able to fit a revectorization line (green line in (j)), which allows
the revectorization (j, k, l) of the shadow boundary.

Similarly to Unity, CryEngine [1] and Unreal Engine [5] sup-
port shadow mapping for point and spot light sources, cascaded
shadow maps for directional lights and ray tracing for static scenes.
Additionally, Unreal Engine supports an original technique called
ray traced distance field soft shadows, which improves the visual
quality of the cascaded shadow maps, further reducing the aliasing
artifacts, but increasing processing time.

Although it is not formally defined as a game engine, NVIDIA
GameWorks [2] is a sample development kit which provides sup-
port for several real-time shadow techniques into the NVIDIA
ShadowWorks [3] and advanced ray tracing solutions via NVIDIA
OptiX [30]. NVIDIA GameWorks is open-source, has already been
integrated into the Unreal Engine2 and is extensible to work with

2https://developer.nvidia.com/nvidia-gameworks-and-ue4

Unity Pro3.
Unity is the most used game engine for mobile gaming [8], is the

second game engine most recommended by industry experts [14]
and is also one the most popular game engines for general game
production, having more than 770 millions of users over the world4.
However, even with this huge popularity, Unity still produces shad-
ows with aliasing artifacts, which are mostly visible for the shadows
rendered from the point or spot light sources. Therefore, we present
an implementation of an anti-aliasing shadow technique which uses
the available source code access in the popular Unity game engine
to improve the visual quality of the hard shadows generated from
spot lights.

3https://developer.nvidia.com/content/gameworks-unity
4https://unity3d.com/pt/public-relations

3 REVECTORIZATION-BASED SHADOW MAPPING

In this section we describe the shadow anti-aliasing algorithm cho-
sen to be implemented in Unity: Revectorization-Based Shadow
Mapping (RBSM) [24]. As we show here, an implementation of
RBSM is able to use the available resources of the game engine to
provide shadow anti-aliasing.

Shadow aliasing (Figure 2-(d)) is caused by the mismatch of res-
olutions between the shadow map (Figure 2-(c)), that is rendered
from the light source viewpoint (Figure 2-(b)), and the visible frag-
ments in the scene, as seen from the camera viewpoint (Figure 2-
(a)). This artifact is generated when different fragments in the scene
are projected into the same shadow map texels, obtaining the same
visibility conditions.

To minimize shadow aliasing, RBSM defines a new visibility
function which works per fragment in the camera view. Much
like an extension of the morphological anti-aliasing [18] for hard
shadows [7], RBSM detects the fragments located in the aliased
shadow boundary (Figure 2-(f, g)), traverses the shadow boundary
to estimate the size of the aliasing (Figure 2-(h, i)), and then deter-
mines whether a fragment in the lit side of the aliasing must be put
in shadow to revectorize the aliasing boundary (Figure 2-(j)), fur-
ther reducing the visual aspect of the aliasing (Figure 2-(k, l)). An
overview of this process is depicted in Figure 2 and is described in
details below.

The first step of RBSM consists in the generation of the shadow
map (Figure 2-(c)), as proposed by the shadow mapping tech-
nique. Then, each fragment in the camera view is projected into
the shadow map, where a shadow test is conducted to determine
whether the fragment is in shadow, according to the depth differ-
ence between the depth stored in the shadow map and the depth of
the fragment projected [38].

To formalize such an algorithm, let us define the surface point
p distant to the light source by pz. Now, let us assume the shadow
map texel in the position x,y as tx,y and z(tx,y) as a function which
computes the depth of the blocker of the surface point p stored in
the shadow map. Using these definitions, the shadow test may be
defined by the binary visibility function s(pz,z(tx,y)) [38]

s(pz,z(tx,y)) =

{
0 if pz > z(tx,y),

1 otherwise,
(1)

which indicates that the surface point p is in shadow if its distance
pz to the light source is higher than the depth z(tx,y) stored in the
corresponding shadow map texel. In (1), the value 0 indicates that
p is in the umbra and 1 otherwise.

Next, once the aliased hard shadows (Figure 2-(d, e)) have been
generated as a result from the shadow test, RBSM detects the frag-
ments which are located inside an aliased shadow boundary (Figure
2-(f, g)), because only these fragments need to be anti-aliased by
the algorithm. To do so, the shadow test result computed for each
fragment is compared against the ones obtained for its 4-connected
neighbourhood in the shadow map (Figure 2-(f)). In practice, the
neighbourhood shadow test evaluation is computed as N

N =
[
s(z(tx−ox,y)),s(z(tx+ox,y)),s(z(tx,y+oy)),s(z(tx,y−oy))

]
, (2)

where ox and oy are the shadow map texel width and height and
pz was omitted from (2) because the value is the same for the four
shadow test evaluations.

If the shadow test states that a fragment is lit and its visibil-
ity condition is different from at least one of its neighbours in the
shadow map, the fragment is located in an aliased shadow bound-
ary and must be revectorized. In this case, we need to compute the
directions where the aliasing artifacts are located (Figure 2-(g)). To
store such directions, the RBSM algorithm defines a discontinuity

d as the absolute difference in the shadow test results between a
fragment and its 4-connected neighbors in the shadow map [24]

d =
[
|N1− s|, |N2− s|, |N3− s|, |N4− s|

]
. (3)

Similar to morphological anti-aliasing, in the next step of RBSM,
a traversal is performed over the shadow boundary (Figure 2-(h)) to
estimate the size of the aliasing, and compute the normalized rela-
tive distance of each fragment to the origin of the aliased boundary
where the fragment is located (Figure 2-(i)). In fact, for each frag-
ment projected into the shadow map, the algorithm traverses the
shadow boundary in all the four directions of the 2D space and stops
the traversal whenever the traversal steps out of the lit part of the
shadow boundary. Discontinuity directions are useful in this traver-
sal because they only exist at the shadow boundary. So, whenever
the traversal does not step into a place where there is discontinuity,
the traversal is out of the shadow boundary.

The traversal over the shadow boundary allows not only the com-
putation of the normalized relative distance and position of the
fragment in the shadow boundary, but also the identification of the
shape of the aliasing in which the fragment is located. These data
are used in the last step of RBSM, which determines whether the
fragment must be shadowed or remain lit (Figure 2-(j)). In this step,
a linear comparison is performed using the normalized relative po-
sition of the fragment to detect where a fragment is located in the
inner-side of the revectorized boundary (green line in Figure 2-(j)).
As shown in Figure 2-(k, l), RBSM is able to reduce the aliasing
artifacts generated by shadow mapping.

4 SHADOWS IN UNITY

As already stated in Section 2.2, Unity uses the shadow mapping as
a basis to compute shadows generated from directional, point and
spot light sources.

Directional light sources try to mimic the behaviour of distant
light sources (e.g., the sun) by emitting parallel light rays in a sin-
gle, dominant direction to illuminate large outdoor scenes. Since
these light sources are defined by their directions, rather than their
positions, a shadow map is rendered using orthographic projection
to keep the light rays parallel to each other. For large-scale scenes, a
single shadow map is mostly insufficient to compute accurate shad-
ows. To solve this problem, Unity uses a variant of the shadow
mapping, the cascaded shadow mapping [12], to partition the 3D
space into several parts, and associate a shadow map for each one
of them5. Cascaded shadow mapping enables high-quality shadow
rendering for large scenarios, at the cost of more processing time.
However, even when using this technique, aliasing artifacts still can
be seen in the final rendering, due to the limited resolution of the
multiple shadow maps rendered.

Differently from a directional light source, a point light source
has a position and works like an infinitesimal sphere which emits
light rays in all directions. From a lookup on the source code, we
could see that Unity builds a cube map of shadow maps to compute
the shadows generated by the occlusion of the light rays. To do so,
the engine renders six shadow maps, one per face of the cube, and
stores the shadow maps into the cube map. While being able to
compute shadows for large scenes, shadow rendering with this type
of light source is relatively expensive, since six shadow maps need
to be generated by the algorithm.

Spot light sources have a position, a dominant direction and
are able to simulate shadows for a limited extension of the scene.
Hence, a single shadow map rendered using perspective projection
is able to cover the part of the scene that is illuminated by the light
source. While spot light sources are not well suited for outdoor illu-
mination and produces aliasing artifacts along the shadow bound-
ary, they are able to simulate shadows efficiently, since only one
shadow map must be rendered per light source.

5https://docs.unity3d.com/Manual/DirLightShadows.html

Name Type Description
ShadowMapTexture internal Shadow map

ShadowMapTexture TexelSize float4 Shadow map texel size / Shadow map resolution
shadowCoord float4 Coordinates to access the shadow map for a given fragment

LightShadowData float4 Shadow intensity (or shadow strength, in Unity)

Table 1: List of variables available in Unity for shadow mapping with spot lights.

Name Input Output Description
UNITY DECLARE SHADOWMAP internal ShadowMapTexture void Declares the shadow map as ShadowMapTexture

SAMPLE DEPTH TEXTURE PROJ internal ShadowMapTexture
and float2 shadowCoord float Returns the depth stored in the shadow map

for a given texel

UNITY SAMPLE SHADOW PROJ internal ShadowMapTexture
and float4 shadowCoord float Returns the shadow test for a given fragment

Table 2: List of functions available in Unity for shadow mapping with spot lights.

In Unity, the source code which contains where the shadow
maps are generated is private. Therefore, the techniques (e.g.,
[34, 10, 6, 29, 21, 32]) which require a modification of the struc-
ture of the shadow map to provide shadow anti-aliasing cannot be
implemented in the game engine without source code access. Also,
directional and point light sources use an additional structure (a list
of shadow maps for directional light sources, and a cube map for
point light sources) to store the multiple shadow maps rendered.
However, Unity does not give access to the individual shadow maps
generated with those light sources. Instead, the engine encapsu-
lates these structures into a variable named ShadowMapTexture,
which simply returns whether a given fragment in the camera view-
point is located in shadow, or the depth of the blocker of a given
fragment. This imposes another restriction on the implementation
of shadow anti-aliasing, since most of the techniques proposed in
the literature require the access per shadow map to provide shadow
anti-aliasing. Fortunately, spot lights produce a single shadow
map, that corresponds exactly to the ShadowMapTexture vari-
able. That is why we have chosen to focus the implementation of a
shadow anti-aliasing technique for spot lights.

A list of the variables and functions provided by Unity for
shadow mapping with spot lights is shown in Tables 1 and 2. An
example of their usage to compute the aliased hard shadows is pre-
sented in Listing 1. The source code for shadow rendering using
spot lights is available in the UnitySampleShadowmap method
in the shader file UnityShadowLibrary.cginc of Unity. Basically,
the UnitySampleShadowmap method receives as input the coor-
dinates of the fragment rendered from the camera viewpoint, but
projected on the shadow map (line 1), uses that coordinates to ac-
cess the shadow map texture ShadowMapTexture and compute
the shadow test using the UNITY SAMPLE SHADOW PROJ
method (lines 4-5). Then, depending on whether the fragment is
in shadow, the method returns 1.0, indicating full visibility of the
fragment (line 7) or LightShadowData.r, an intensity value ac-
counting that the fragment is shadowed (line 8).

4.1 Shadow Revectorization in Unity
In Listing 2, we show the main pipeline of the RBSM implemen-
tation. First, we evaluate the shadow test for a given fragment to
detect whether the fragment is shadowed or lit (line 4-5). As shown
in Figure 2-(f), RBSM operates only on the lit fragments located in
the aliased shadow boundary (line 6). Hence, for each lit fragment,
we follow the pipeline shown in Figures 2 -(g, h, i, j): We evaluate
the neighbour shadow map texels (Figure 2-(f)) to compute the dis-
continuity directions where the aliased boundary is located (Figure
2-(g) and line 8). If an aliased boundary has been detected (line 9),
we traverse the shadow boundary to compute the size of the alias-
ing, as well as the relative distance of the fragment to the origin of

1 fixed UnitySampleShadowmap (float4 shadowCoord)
2 {
3
4 half shadow = UNITY_SAMPLE_SHADOW_PROJ
5 (_ShadowMapTexture, shadowCoord);
6
7 if(shadow > 0.0) return 1.0;
8 else return _LightShadowData.r;
9

10 }

Listing 1: Shadow mapping for spot lights in Unity.

1 fixed UnitySampleShadowmap (float4 shadowCoord)
2 {
3
4 half shadow = UNITY_SAMPLE_SHADOW_PROJ
5 (_ShadowMapTexture, shadowCoord);
6 if(shadow == 0) return _LightShadowData.r;
7
8 float4 d = computeDiscontinuity(shadowCoord);
9 if(d > 0.0) return 1.0;

10
11 float4 rd = computeRD(shadowCoord);
12 float2 nrd = normalizeRD(rd);
13 shadow = computeRBSMVisibility(nrd, d);
14 if(shadow > 0.0) return 1.0;
15 else return _LightShadowData.r;
16
17 }

Listing 2: RBSM for spot lights in Unity.

the local aliasing (Figure 2-(h) and line 11). Next, we normalize
such relative distance (Figure 2-(i) and line 12) and define a visi-
bility function (line 13) to determine whether a fragment must be
revectorized (Figure 2-(j) and lines 14-15).

In lines 4 and 5 of Listing 2, we use the
UNITY SAMPLE SHADOW PROJ function to compute
the shadow test (1). In the function computeDiscontinuity of line
8, we compute equations (2) and (3) to estimate the discontinuity
directions at the aliased boundary. It is noteworthy that the offset
value o in (2) is equivalent to the value stored in the first two
coordinates of ShadowMapTexture TexelSize, variable which
returns exactly the shadow map texel size in terms of width and
height.

1 float computeRD (float4 coord, float2 dir) {
2
3 int maxSize = 16;
4 float distance = 1.0;
5 float umbra = 0.0;
6 float4 d;
7 float4 tempCoord = coord;
8 float2 step = _ShadowMapTexture_TexelSize.xy;
9 tempCoord.xy += dir * step;

10
11 for(int it = 0; it < maxSize; it++) {
12 half shadow = UNITY_SAMPLE_SHADOW_PROJ
13 (_ShadowMapTexture, tempCoord);
14 if(shadow == 0.0) {
15 umbra = 1.0;
16 break;
17 } else {
18 d = computeDiscontinuity(tempCoord);
19 if(d == 0.0) break;
20 }
21 distance++;
22 tempCoord.xy += dir * step;
23 }
24
25 return lerp(-distance, distance, umbra);
26
27 }
28
29 float lerp(float x, float y, float a) {
30 return x * (1.0 - a) + y * a;
31 }

Listing 3: An algorithm to compute the relative distance of a fragment
to the shadow boundary.

A more in-depth view of the function computeRD (line 11, List-
ing 2) is shown in Listing 3. RBSM computes the relative distance
of the fragment with respect to the shadow boundary for the four di-
rections of the 2D space. For each direction, we use the first two co-
ordinates of ShadowMapTexture TexelSize to compute the step
to access the neighbour shadow map texel and perform the traversal
over the shadow boundary (line 8, Listing 3). Also, we use the vari-
able maxSize to define the maximum aliasing size that we will con-
sider for revectorization (line 3, Listing 3). As suggested in [24], we
define maxSize equals to 16 to keep the frame rate more constant.
Then, for each shadow map texel being accessed, we check whether
we step out of the lit side of the aliased boundary. This condition
is fulfilled whenever we step into an umbra texel (lines 14-16, List-
ing 3) or step into a lit texel that does not have any discontinuity
directions (i.e., the texel is not neighbour of an umbra texel) (lines
17-19, Listing 3). Otherwise, we increment the variable distance
(line 21, Listing 3), which represents the size of the aliasing. In line
25 of Listing 3, we use a linear interpolation to make the distance
value signed. We orientate a distance value to be positive towards
the origin of the aliasing (the corner of the aliasing, which is lo-
cated in the top-left side of the aliasing shown in Figure 2-(i)) and
negative otherwise. This orientation of the distance value helps in
the normalization of the relative distance, which is performed by
the function normalizeRD.

The function normalizeRD shown in line 12 of Listing 2 takes as
input the relative distance of the fragment to the ends of the shadow
boundary in the four directions of the 2D space and normalizes it
to a reference coordinate system which lies in the unit interval [0,
1]. As shown in Figure 2-(i), the origin of this coordinate system is
located in the corner of the aliasing. Finally, the function comput-
eRBSMVisibility (line 13, Listing 2) takes as input the normalized

Figure 3: A visual comparison between shadow mapping (top) and
RBSM (bottom) for the Chris model using a low-resolution (2562)
shadow map.

relative distance and the discontinuity directions of a given frag-
ment and, depending on the shadow aliasing configuration, a linear
comparison is used to define the new revectorized shadow bound-
ary [24]. None of these two functions require any of the variables
and functions listed in Tables 1 and 2. Therefore, they can be im-
plemented in Unity.

5 RESULTS AND DISCUSSION

5.1 Experimental Setup
In this section, we compare both shadow mapping and RBSM in
terms of visual quality and rendering time. Similarly to Unity, we
classify the shadow map resolution we have used for each figure as
low, medium, high or very high. Also, most of the figures shown in
this paper do not contain scenes with high-frequency textures be-
cause they could potentially mask shadow rendering irregularities.
That is why we have chosen to use white textures in the ground
planes and some of the other objects.

Tests were performed on a personal computer equipped with an
NVIDIA GeForce GTX Titan X graphics card and an Intel CoreTM

i7-3770K CPU (3.50 GHz), 8GB RAM. We have tested the exper-
iments in the Unity Pro version 5.6.0.f3. The proposed shader file

Figure 4: A visual comparison between shadow mapping (left) and
RBSM (right) for the Coconut model using a medium-resolution
(5122) shadow map.

Figure 5: A visual comparison between shadow mapping (left) and
RBSM (right) for the Robot model using a high-resolution (10242)
shadow map.

was implemented using the Cg language [13] and is available in an
open-source repository [23]. In the accompanying video, we show
additional results, including tests with more scenarios.

For the visual quality evaluation, we wanted to compare the hard
shadows generated with shadow mapping and RBSM with the ones
obtained from more accurate techniques, such as shadow volumes
and ray tracing. Unfortunately, Unity does not give much sup-
port for accurate hard shadow rendering techniques. We could not
compare the shadows generated from area light sources with the
ones obtained with shadow mapping and RBSM because area light
sources generate shadows with penumbra, while we have focused
on the anti-aliasing provided for hard shadows. Moreover, area light
sources do not run in real-time for dynamic scenes. In terms of the
available plugins for Unity, the only existing plugin that implements
the shadow volume technique for Unity does not work in the cur-
rent version of the game engine, as stated in the official repository

Figure 6: A visual comparison between shadow mapping (top) and
RBSM (bottom) for the Gate model using a very high-resolution
(20482) shadow map.

of the plugin6. The same statement is held for the available CPU
implementation of ray tracing for Unity7, which also seems to be
pretty much slower than both shadow mapping and RBSM. Given
these facts, in Sections 5.2 and 5.3, we evaluate the effectiveness of
the RBSM implementation on the anti-aliasing of the shadows gen-
erated in Unity. For an isolated comparison between RBSM and
shadow volume, we direct the reader to see previous work [24].

5.2 Visual Quality

In figures 1, 3, 4, 5 and 6, we show a visual comparison between
shadow mapping and RBSM for different models and shadow map
resolutions. We can see that, regardless of the shadow map reso-
lution used, shadow mapping generates aliasing artifacts along the
shadow boundary because the shadow map resolution is finite and
does not match the pixel resolution of the camera view. Then, by
traversing the shadow aliasing boundary, RBSM is able to minimize
the artifacts and improve the shadow visual quality.

The quality of the shadow revectorization is dependent on the
shadow map resolution used and the quality of the aliased boundary.
RBSM works well for the scenarios shown in figures 1, 3 and 4,

6https://www.assetstore.unity3d.com/en/content/1861
7https://github.com/BenjaminSchaaf/Unity-Raytracer

Figure 7: A visual comparison between shadow mapping (top) and RBSM (bottom) for the complex San Miguel model using a very high-resolution
(20482) shadow map.

despite the use of a low and a medium shadow map resolutions.
In these cases, the objects and their shadows are relatively simple,
since there is not much intersection between shadow boundaries
and a few fine details to be captured by the shadow map. Hence,
the aliasing is the most noticeable artifact that prevents an accurate
shadow rendering. So, by the use of RBSM, we can minimize these
artifacts and improve the shadow visual quality efficiently. On the
other hand, the shadows shown in the red closeup of Figure 5 and
green closeup of Figure 6 have a more complex shape, with several
intersections in the shadow boundary and fine details captured by
the shadow map, respectively. In these cases, RBSM minimizes the
aliasing artifacts at the cost of causing a shadow overestimation,
suppressing some details of the original shadow boundary.

In Figure 7, we show a more complex scenario that contains
many structures with fine details (trees), non-planar shadow re-
ceivers (chairs on the floor) and multiple objects that overlap each
other. In this case, shadow mapping not only generates the aliasing
artifacts, but also is not able to capture the fine details of the light
blocker objects, causing the appearance of holes along the shadow
boundary (see the blue rectangles in Figure 7). Since Unity fixes
the maximum shadow map resolution that can be used in the en-
gine, this kind of problem cannot be solved when computing real-
time shadows. On the other side, RBSM helps on the minimization
of the shadow aliasing artifacts (see the closeups of Figure 7), but
is not able to solve the problem of the shadow holes caused by the
insufficient shadow map resolution used.

In Figure 8, we show that our shadow anti-aliasing implemen-
tation works not only for indoor environments, but also for large
outdoor environments with high-detailed structures, such as vegeta-
tions, streets and buildings. The closeups in Figure 8 show that the

Shadow Map Resolution

Scene Method Low
(2562)

Medium
(5122)

High
(10242)

Very High
(20482)

Fig. 1
SM 5.06 ms 5.09 ms 5.11 ms 5.12 ms

RBSM 5.14 ms
(1.58%)

5.16 ms
(1.37%)

5.20 ms
(1.76%)

5.22 ms
(1.95%)

Fig. 3
SM 4.96 ms 4.99 ms 5.01 ms 5.03 ms

RBSM 5.03 ms
(1.41%)

5.07 ms
(1.60%)

5.10 ms
(1.79%)

5.12 ms
(1.78%)

Fig. 4
SM 5.14 ms 5.16 ms 5.17 ms 5.20 ms

RBSM 5.14 ms
(0.00%)

5.19 ms
(0.58%)

5.20 ms
(0.58%)

5.21 ms
(0.19%)

Fig. 5
SM 5.08 ms 5.11 ms 5.12 ms 5.14 ms

RBSM 5.14 ms
(1.18%)

5.16 ms
(0.97%)

5.18 ms
(1.17%)

5.22 ms
(1.55%)

Fig. 6
SM 5.07 ms 5.08 ms 5.14 ms 5.16 ms

RBSM 5.12 ms
(0.98%)

5.14 ms
(1.18%)

5.15 ms
(0.19%)

5.18 ms
(0.38%)

Fig. 7
SM 5.02 ms 5.03 ms 5.04 ms 5.04 ms

RBSM 5.08 ms
(1.19%)

5.10 ms
(1.39%)

5.11 ms
(1.38%)

5.13 ms
(1.78%)

Fig. 8
SM 7.43 ms 7.46 ms 7.48 ms 7.69 ms

RBSM 7.46 ms
(0.40%)

7.51 ms
(0.67%)

7.57 ms
(1.20%)

7.74 ms
(0.65%)

Table 3: Performance (including percentual of overhead) of shadow
mapping (SM) and RBSM for varying shadow map resolution.
Scenes were rendered at an output 1080p resolution.

Figure 8: A visual comparison between shadow mapping (top) and RBSM (bottom) for the exterior environment of the Unity’s Adam model using
a very high-resolution (20482) shadow map.

use of spot lights for outdoor illumination clearly generates shadow
aliasing artifacts, which can be effectively suppressed by RBSM.

5.3 Rendering Time
In Tables 3 and 4, we measured how much time the engine needed
to generate the figures shown in this paper for varying shadow map
and output resolutions. Similarly to the shadow mapping technique,
RBSM becomes slower as long as both shadow map (Table 3) and
output resolutions (Table 4) are increased. Fortunately, the per-
centage of overhead added by RBSM keeps small regardless of the
shadow map or output resolution used, proving that the RBSM tech-
nique is scalable with respect to these changes in resolution.

Both Table 3 and Table 4 show that the RBSM technique is about
0.01 and 0.5 milliseconds (or between 0.1% and 3.9%) slower than
shadow mapping for the hardware setup described in Section 5.1.
Meanwhile, we can see from all the figures shown in this paper that
RBSM greatly improves the visual quality of the shadow. Hence,
we believe that RBSM proved to be an efficient hard shadow anti-
aliasing technique, because RBSM can leverage the shadow visual
quality, while adding a pretty small overhead of∼1.2%, in average,
in the total frame time.

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented an implementation of RBSM, an
anti-aliasing, real-time hard shadow technique, for the Unity game
engine. Since Unity uses the shadow mapping for shadow ren-
dering, aliasing artifacts are generated along the shadow boundary.
We have shown that, by the use of the proposed implementation of
RBSM, we are able to minimize these aliasing artifacts, generating
high-quality shadows at minimal additional cost.

Output Resolution
Scene Method 720p 1080p 2160p

Fig. 1
SM 5.11 ms 5.12 ms 5.14 ms

RBSM 5.16 ms
(0.97%)

5.22 ms
(1.95%)

5.34 ms
(3.89%)

Fig. 3
SM 5.01 ms 5.03 ms 5.04 ms

RBSM 5.11 ms
(1.99%)

5.12 ms
(1.78%)

5.12 ms
(1.58%)

Fig. 4
SM 5.19 ms 5.20 ms 5.20 ms

RBSM 5.19 ms
(0.00%)

5.21 ms
(0.19%)

5.22 ms
(0.38%)

Fig. 5
SM 5.02 ms 5.14 ms 5.21 ms

RBSM 5.18 ms
(3.18%)

5.22 ms
(1.55%)

5.24 ms
(0.57%)

Fig. 6
SM 5.05 ms 5.16 ms 5.17 ms

RBSM 5.10 ms
(0.99%)

5.18 ms
(0.38%)

5.25 ms
(1.54%)

Fig. 7
SM 4.99 ms 5.04 ms 5.07 ms

RBSM 5.03 ms
(0.80%)

5.13 ms
(1.78%)

5.14 ms
(1.38%)

Fig. 8
SM 7.49 ms 7.69 ms 15.08 ms

RBSM 7.63 ms
(1.86%)

7.74 ms
(0.65%)

15.55 ms
(3.11%)

Table 4: Rendering performance (including percentual of overhead)
for shadow mapping (SM) and RBSM for varying output resolution.
Scenes were rendered at a very high shadow map resolution.

Due to the limited source code access provided by Unity, we

were not able to implement RBSM for other types of light source,
such as point and directional light sources. Moreover, we could not
implement RBSM for soft shadows that simulate the penumbra ef-
fect. The implementation of RBSM using the entire Unity source
code, or the implementation in other game engines, may enable
one to adapt the technique to support hard and soft shadow render-
ing for any light source. Finally, since NVIDIA GameWorks may
be used with Unity Pro, the field of shadows in game engines still
needs a gentle introduction on how to integrate NVIDIA Shadow-
Works with Unity Pro and an evaluation of the shadow techniques
of NVIDIA ShadowWorks in the context of the Unity game engine.

ACKNOWLEDGMENTS

We are grateful to the NVIDIA Corporation, who donated the hard-
ware used in this work through the GPU Education Center pro-
gram. Also, we are thankful to Unity for delivering the Unity Pro
through the Unity Education Grant License. This research is fi-
nancially supported by the scholarship program of Coordenação de
Aperfeiçoamento de Pessoal do Nı́vel Superior (CAPES).

Dragon (user deadcode3), Drum (user drumssultan), Coconut
(user azlyirnizam), Robot (user ysup12) and Gate (user animated-
heaven) models are courtesy of Free3D and its respective users. San
Miguel model is courtesy of Morgan McGuire [26] and Guillermo
M. Leal Llaguno. Adam model is courtesy of Unity.

REFERENCES

[1] CryEngine. https://www.cryengine.com/. Accessed: 2017-06-27.
[2] NVIDIA GameWorks. https://developer.nvidia.com/gameworks. Ac-

cessed: 2017-06-27.
[3] NVIDIA ShadowWorks. https://developer.nvidia.com/shadowworks.

Accessed: 2017-06-27.
[4] Unity 3D. https://unity3d.com. Accessed: 2017-06-27.
[5] Unreal Engine. https://www.unrealengine.com/. Accessed: 2017-06-

27.
[6] T. Annen, T. Mertens, H.-P. Seidel, E. Flerackers, and J. Kautz. Expo-

nential Shadow Maps. In Proceedings of GI, pages 155–161, Toronto,
Ont., Canada, 2008. Canadian Information Processing Society.

[7] V. Bondarev. Shadow Map Silhouette Revectorization. In Proceedings
of the ACM I3D, pages 162–162, New York, NY, USA, 2014. ACM.

[8] J. Chi and T. Sun. Development drivers: Third-party engines and
mobile gaming. McKinsey & Company, February 2015.

[9] F. C. Crow. Shadow Algorithms for Computer Graphics. In Proceed-
ings of the ACM SIGGRAPH, pages 242–248, New York, NY, USA,
1977. ACM.

[10] W. Donnelly and A. Lauritzen. Variance Shadow Maps. In Proceed-
ings of the ACM I3D, pages 161–165, New York, NY, USA, 2006.
ACM.

[11] E. Eisemann, M. Schwarz, U. Assarsson, and M. Wimmer. Real-Time
Shadows. A.K. Peters, Natick, MA, USA, 2011.

[12] W. Engel. Cascaded shadow maps. In ShaderX 5.0 Advanced Ren-
dering Techniques, pages 197–206. Charles River Media, Hingham
(Mass.), 2006.

[13] R. Fernando and M. J. Kilgard. The Cg Tutorial: The Definitive Guide
to Programmable Real-Time Graphics. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

[14] M. French, J. Batchelor, A. Boucher, and C. Chapple. The tech list.
Develop 100, 2014.

[15] V. Fuetterling, C. Lojewski, F.-J. Pfreundt, and A. Ebert. Efficient Ray
Tracing Kernels for Modern CPU Architectures. Journal of Computer
Graphics Techniques (JCGT), 4(5):90–111, December 2015.

[16] J. Gerhards, F. Mora, L. Aveneau, and G. Djamchid. Partitioned
Shadow Volumes. Computer Graphics Forum, 34(2):549–559, 2015.

[17] D. S. Immel, M. F. Cohen, and D. P. Greenberg. A Radiosity Method
for Non-diffuse Environments. In Proceedings of the ACM SIG-
GRAPH, pages 133–142, New York, NY, USA, 1986. ACM.

[18] J. Jimenez, B. Masia, J. I. Echevarria, F. Navarro, and D. Gutierrez.
Practical Morphological Anti-Aliasing. In W. Engel, editor, GPU Pro
2, pages 95–113. AK Peters Ltd., 2011.

[19] J. T. Kajiya. The Rendering Equation. In Proceedings of the ACM
SIGGRAPH, pages 143–150, New York, NY, USA, 1986. ACM.

[20] A. Lauritzen, M. Salvi, and A. Lefohn. Sample Distribution Shadow
Maps. In Proceedings of the ACM I3D, pages 97–102, New York, NY,
USA, 2011. ACM.

[21] P. Lecocq, J.-E. Marvie, G. Sourimant, and P. Gautron. Sub-pixel
Shadow Mapping. In Proceedings of the ACM I3D, pages 103–110,
New York, NY, USA, 2014. ACM.

[22] D. B. Lloyd, N. K. Govindaraju, C. Quammen, S. E. Molnar, and
D. Manocha. Logarithmic Perspective Shadow Maps. ACM Trans.
Graph., 27(4):106:1–106:32, Nov. 2008.

[23] M. Macedo. RBSM in Unity.
https://github.com/MarcioCerqueira/GlobalIllumination/tree/master/
RBSMinUnity. Accessed: 2017-09-05.

[24] M. Macedo and A. Apolinario. Revectorization-Based Shadow Map-
ping. In Proceedings of the GI, pages 75–83, Toronto, Ont., Canada,
2016. Canadian Information Processing Society.

[25] T. Martin and T.-S. Tan. Anti-aliasing and Continuity with Trapezoidal
Shadow Maps. In Proceedings of the EGSR, pages 153–160, Aire-la-
Ville, Switzerland, 2004. Eurographics Association.

[26] M. McGuire. Computer Graphics Archive. https://casual-
effects.com/data. Accessed: 2017-09-04.

[27] F. Mora, J. Gerhards, L. Aveneau, and D. Ghazanfarpour. Deep Par-
titioned Shadow Volumes using Stackless and Hybrid Traversals. In
Proceedings of the EGSR, pages 73–83, Goslar Germany, Germany,
2016. The Eurographics Association.

[28] G. Morgan and A. Pranckevicius. Practical Techniques for Ray Trac-
ing in Games. In GDC Vault, 2014.

[29] M. Pan, R. Wang, W. Chen, K. Zhou, and H. Bao. Fast, Sub-pixel
Antialiased Shadow Maps. Computer Graphics Forum, 28(7):1927–
1934, 2009.

[30] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock,
D. Luebke, D. McAllister, M. McGuire, K. Morley, A. Robison, and
M. Stich. OptiX: A General Purpose Ray Tracing Engine. ACM Trans.
Graph., 29(4):66:1–66:13, July 2010.

[31] A. Perard-Gayot, J. Kalojanov, and P. Slusallek. GPU Ray Tracing
using Irregular Grids. Computer Graphics Forum, 36(2), 2017.

[32] C. Peters and R. Klein. Moment Shadow Mapping. In Proceedings of
the ACM I3D, pages 7–14, New York, NY, USA, 2015. ACM.

[33] W. T. Reeves, D. H. Salesin, and R. L. Cook. Rendering Antialiased
Shadows with Depth Maps. In Proceedings of the ACM SIGGRAPH,
pages 283–291, New York, NY, USA, 1987. ACM.

[34] P. Sen, M. Cammarano, and P. Hanrahan. Shadow Silhouette Maps.
ACM Trans. Graph., 22(3):521–526, July 2003.

[35] M. Stamminger and G. Drettakis. Perspective Shadow Maps. ACM
Trans. Graph., 21(3):557–562, July 2002.

[36] I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst. Embree:
A Kernel Framework for Efficient CPU Ray Tracing. ACM Trans.
Graph., 33(4):143:1–143:8, July 2014.

[37] T. Whitted. An Improved Illumination Model for Shaded Display.
Commun. ACM, 23(6):343–349, June 1980.

[38] L. Williams. Casting Curved Shadows on Curved Surfaces. In Pro-
ceedings of the ACM SIGGRAPH, pages 270–274, New York, NY,
USA, 1978. ACM.

[39] M. Wimmer, D. Scherzer, and W. Purgathofer. Light Space Perspec-
tive Shadow Maps. In Proceedings of the EGSR, pages 143–151, Aire-
la-Ville, Switzerland, June 2004. Eurographics Association.

[40] A. Woo and P. Poulin. Shadow Algorithms Data Miner. CRC Press,
Natick, MA, USA, 2012.

[41] B. Yang, Z. Dong, J. Feng, H.-P. Seidel, and J. Kautz. Variance
Soft Shadow Mapping. Computer Graphics Forum, 29(7):2127–2134,
2010.

[42] F. Zhang, H. Sun, and O. Nyman. Parallel-Split Shadow Maps on
Programmable GPUs. In H. Nguyen, editor, GPU Gems 3, pages 203–
237. Addison-Wesley, 2008.

[43] F. Zhang, H. Sun, L. Xu, and L. K. Lun. Parallel-split Shadow Maps
for Large-scale Virtual Environments. In Proceedings of the ACM
VRCIA, pages 311–318, New York, NY, USA, 2006. ACM.

